From Attention to Frequency: Integration of Vision Transformer and FFT-ReLU for Enhanced Image Deblurring
International Conference on Agents and Artificial Intelligence, 2026
In this paper, we utilise the FFT-ReLU prior to enhance relevant frequency components using the Fast Fourier Transform (FFT) while applying ReLU sparsity to suppress noise. Our approach utilizes a Vision Transformer as a pre-processing model to generate a less blurry intermediate image by capturing both local and global features, which is then refined through FFT-ReLU, resulting in a sharp, high-quality output. Our experimental results demonstrate that our method consistently outperforms state-of-the-art image deblurring models, providing sharper and more visually compelling images.
